Буферный каскад CD плеера на транзисторах п605 c дросселем. Буферные каскады Доработка и улучшения

Большинство аудиолюбителей достаточно категорично и не готово к компромиссам при выборе аппаратуры, справедливо полагая, что воспринимаемый звук обязан быть чистым, сильным и впечатляющим. Как этого добиться?

Поиск данных по Вашему запросу:

Буферный усилитель на оу

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Пожалуй, основную роль в решении этого вопроса сыграет выбор усилителя.
Функция
Усилитель отвечает за качество и мощь воспроизведения звука. При этом при покупке стоит обратить внимание на следующие обозначения, знаменующие внедрение высоких технологий в производство аудио - аппаратуры:


  • Hi-fi. Обеспечивает максимальную чистоту и точность звука, освобождая его от посторонних шумов и искажений.
  • Hi-end. Выбор перфекциониста, готового немало заплатить за удовольствие различать мельчайшие нюансы любимых музыкальных композиций. Нередко к этой категории относят аппаратуру ручной сборки.

Технические характеристики, на которые следует обратить внимание:

  • Входная и выходная мощность. Решающее значение имеет номинальный показатель выходной мощности, т.к. краевые значения часто недостоверны.
  • Частотный диапазон. Варьируется от 20 до 20000 Гц.
  • Коэффициент нелинейных искажений. Здесь все просто - чем меньше, тем лучше. Идеальное значение, согласно мнению экспертов - 0,1%.
  • Соотношение сигнала и шума. Современная техника предполагает значение этого показателя свыше 100 дБ, что сводит к минимуму посторонние шумы при прослушивании.
  • Демпинг-фактор. Отражает выходное сопротивление усилителя в его соотношении с номинальным сопротивлением нагрузки. Иными словами, достаточный показатель демпинг-фактора (более 100) уменьшает возникновение ненужных вибраций аппаратуры и т.п.

Следует помнить: изготовление качественных усилителей - трудоемкий и высокотехнологичный процесс, соответственно, слишком низкая цена при достойных характеристиках должна Вас насторожить.

Классификация

Чтобы разобраться во всем многообразии предложений рынка, необходимо различать продукт по различным критериям. Усилители можно классифицировать:

  • По мощности. Предварительный - своеобразное промежуточное звено между источником звука и конечным усилителем мощности. Усилитель мощности, в свою очередь, отвечает за силу и громкость сигнала на выходе. Вместе они образуют полный усилитель.

Важно: первичное преобразование и обработка сигнала происходит именно в предварительных усилителях.

  • По элементной базе различают ламповые, транзисторные и интегральные УМ. Последние возникли с целью объединить достоинства и минимизировать недостатки первых двух, например, качество звука ламповых усилителей и компактность транзисторных.
  • По режиму работы усилители подразделяются на классы. Основные классы - А, В, АВ. Если усилители класса А используют много энергии, но выдают высококачественный звук, класса B с точностью до наоборот, класс AB представляется оптимальным выбором, представляя собой компромиссное соотношение качества сигнала и достаточно высокого КПД. Также различают классы C, D, H и G, возникшие с применением цифровых технологий. Также различают однотактные и двухтактные режимы работы выходного каскада.
  • По количеству каналов усилители могут быть одно-, двух- и многоканальными. Последние активно применяются в домашних кинотеатрах для формирования объемности и реалистичности звука. Чаще всего встречаются двухканальные соответственно для правой и левой аудиосистем.

Внимание: изучение технических составляющих покупки, конечно, необходимо, но зачастую решающим фактором является элементарное прослушивание аппаратуры по принципу звучит-не звучит.

Применение

Выбор усилителя в большей степени обоснован целями, для которых он приобретается. Перечислим основные сферы использования усилителей звуковой частоты:

  1. В составе домашнего аудиокомплекса. Очевидно, что лучшим выбором является ламповый двухканальный однотакт в классе А, также оптимальный выбор может составить трехканальный класса АВ, где один канал определен для сабвуфера, с функцией Hi - fi.
  2. Для акустической системы в автомобиле. Наиболее популярны четырехканальные усилители АВ или D класса, в соответствии с финансовыми возможностями покупателя. В автомобилях также востребована функция кроссовер для плавной регулировки частот, позволяющей по мере необходимости срезать частоты в высоком или низком диапазоне.
  3. В концертной аппаратуре. К качеству и возможностям профессиональной аппаратуры обоснованно предъявляются более высокие требования в силу большого пространства распространения звуковых сигналов, а также высокой потребности в интенсивности и длительности использования. Таким образом, рекомендуется приобретение усилителя классом не ниже D, способного работать почти на пределе своей мощности (70-80% от заявленной), желательно в корпусе из высокотехнологичных материалов, защищающем от негативных погодных условий и механических воздействий.
  4. В студийной аппаратуре. Все вышеизложенное справедливо и для студийной аппаратуры. Можно добавить о наибольшем диапазоне воспроизведения частот - от 10 Гц до 100 кГц в сравнении с таковым от 20 Гц до 20 кГц в бытовом усилителе. Примечательна также возможность раздельной регулировки громкости на различных каналах.

Таким образом, чтобы долгое время наслаждаться чистым и качественным звуком, целесообразно заранее изучить все многообразие предложений и подобрать вариант аудио аппаратуры, максимально отвечающий Вашим запросам.

Буферные Усилители

В этом разделе мы рассмотрим лишь повторители напряжения (см. рис. 2), повторители тока строятся при помощи соответствующего выбора цепей обратной связи. Повторители (буферы) имеют коэффициент усиления, равный единице, а также исключительно высокий входной и низкий выходной импедан-сы. В базовой схеме включения ОУ входной импеданс определяется компонентами на входе и свойствами самого ОУ. В схеме буфера входной импеданс определяется исключительно свойствами ОУ. Таким образом, входной импеданс такой схемы зависит только от свойств операци-

онного усилителя. В базовой схеме входные компоненты нагружают входной сигнал, что нежелательно в том случае, когда источник сигнала имеет высокое выходное сопротивление. Проблема повышения входного импеданса решается при помощи буферных либо инструментальных усилителей. Следует отметить, что выходное сопротивление ОУ является комплексной функцией, т.к. на него влияют цепи обратной связи. Определяющее влияние на выходной импеданс оказывает сопротивление выходного каскада. Обычно в качестве выходного каскада используется эмиттерный повторитель, имеющий низкий выходной импеданс, определяемый как r ib + R B /P и имеющий типовое значение в 25 Q. Выходной импеданс эмиттерного повторителя растет с увеличением частоты, образуя перемещающиеся полюса (полюсами называются точки резкого

Таблица 1. Построение различных схем при помощи изменения величины компонентов базовой схемы на рис. 1

Тип схемы

V1

V2

ZG

ZF

Z1

Z2

Инвертирующий усилитель

входной сигнал

земля

определяется усилением

определяется усилением

отсутствует

ZG||ZF

Неинвертирующий усилитель

земля

входной сигнал

определяется усилением

определяется усилением

ZG||ZF

отсутствует

Инвертирующий интегратор

входной сигнал

земля

отсутствует

ZG||ZF

Буфер

земля

входной сигнал

отсутствует

замкнут

замкнут

отсутствует

Схема вычитания

входной сигнал -

входной сигнал +

изменения частотной характеристики) и порождая погрешности на высоких частотах. Еще хуже обстоят дела в операционных усилителях, диапазон сигнала которых равен диапазону питающего напряжения (так называемые rail-to-rail усилители), т.к. выходной каскад в них построен по схеме с общим коллектором; суммарный импеданс в этом случае зависит от нагрузки и может достигать значительных величин, до нескольких килоом. Помочь в этом случае может правильный выбор петлевого усиления, которое влияет на импеданс выходного каскада и способно значительно его снизить. В результате на постоянном токе и в области низких частот можно добиться очень низких значений выходного импеданса операционного усилителя, до долей Ом. Выходное сопротивление повышается с ростом частоты, так как при повышении частоты снижается усиление ОУ. Высокий выходной импеданс чреват двумя проблемами — влияние токов нагрузки на сигнал и проблемами со стабильностью, возникающими из-за того, что выходные конденсаторы создают полюса. Наилучшим решением при работе с высокими токами нагрузки является использование специально разработанных для этих целей ОУ. Ещенесколько лет назад для работы на терминированный кабель (что требует нескольких сотен миллиампер выходного тока) использовались специальные буферные каскады, на данный же момент существуют специально разработанные операционные усилители, способные без проблем работать на такую нагрузку. Преимущество бу-

фера по сравнению с типовой схемой включения ОУ заключается в том, что буфер всегда имеет меньший импеданс, т.к. его петлевое усиление максимально, а выходной каскад также разработан с учетом требований минимизации импеданса. По отношению к емкостным нагрузкам разные ОУ ведут себя по разному — одни становятся нестабильными, другие же не имеют подобных проблем. Операционные усилители, способные работать на нагрузки с большой емкостью, имеют очень низкое сопротивление выходного каскада, однако, при этом проигрывают в скорости, т.к. требуют выходных транзисторов повышенных размеров. Резюмируя вышесказанное — в зависимости от требований к выходному импедансу разработчику следует отдать выбор операционному усилителю, буферу либо усилителю мощности.





Повторитель напряжения — это самый простой из возможных усилителей, обладающих отрицательной обратной связью (ООС). Выходное напряжение точно равно входному напряжению. Если оно ничем не отличаются, то вы можете спросить — зачем это нужно, если от этого ничего не изменяется?

Суть в том, что речь идет о напряжении, а не о токе. Так вот, повторитель напряжения почти не потребляет тока от источника сигнала, и позволяет получить довольно высокий ток со своего выхода.

Нам часто приходится иметь дело с активными радиокомпонентами, которые имеют очень малый выходной ток. Примером такого компонента является или . Подключение к ним элементов с низким сопротивлением приведет к уменьшению напряжения выходного сигнала, генерируемого этими источники.

В такой ситуации имеет смысл использовать повторитель напряжения. Он имеет высокое входное сопротивление, поэтому он не снижает и не искажает входной сигнал, а так же обладает низким выходным сопротивлением, что позволяет подключить энергоемкие компоненты, например, светодиод.

Чтобы понять, как работает повторитель напряжения, мы должны знать три элементарных правила, определяющие работу операционного усилителя:

Правило №1 - операционный усилитель оказывает воздействие своим выходом на вход через ООС (отрицательная обратная связь), в результате чего напряжения на обоих входах, как на инвертирующем (-), так и на неинвертирующем (+) выравнивается.

Правило №2 - входы усилителя не потребляют ток

Правило №3 - напряжения на входах и выходе должны быть в диапазоне между положительным и отрицательным напряжением питания ОУ.

Предположим, что входное напряжение стало 3В, а в настоящее время на выходе у нас 1В. Что произойдет? Усилитель определяет, что между инвертирующим входом (-) и неинвертирующим (+) разница составляет 2В.

Поэтому, в соответствии с правилом №1, выходное напряжение увеличивается до тех пор, пока напряжения на входах не сравняют. Ситуацию дополнительно упрощает тот факт, что выход соединен непосредственно с инвертирующим входом (-), и это неизбежно приводит к тому, что напряжение на этих двух выводах становиться одинаковым.

Часто, в схеме повторителя напряжения, можно встретить дополнительный резистор в цепи обратной связи. Он необходим там, где требуется повышенная точность. Правила №1 и №2 относятся к идеальному операционному усилителю, которого в реальности нет.

Напряжения на входах не могут быть идеально одинаковыми, через них протекает небольшой ток, поэтому напряжение на выходе может отличаться от входного напряжения на несколько милливольт. Резистор R предназначен для уменьшения влияния этих недостатков. Он должен иметь сопротивление равное сопротивлению источника сигнала.

Буферные каскады широко применяются в аудиотехнике для согласования входных и выходных сопротивлений каскадов или устройств, а также для повышения их нагрузочной способности. Разумеется, что такой каскад должен обладать высокими характеристиками по шумам, искажениям, быстродействию.

Конечно, идеальный буферный каскад — это его отсутствие, но раз уж без него ни как не обойтись, то хотелось бы, чтобы он был максимально прозрачным, то есть оказывал минимальное влияние на сигнал, ну и по возможности, был простым. Обычно буферные каскады работают с малыми уровнями сигналов и относительно небольшим напряжением питания, что заметно облегчает решение этой задачи

В предлагаемом варианте буферного каскада не используются отрицательные обратные связи (которые так не любят «ламповики» и истинные аудиофилы), благодаря чему он действительно практически не заметен в тракте. Для снижения искажений используется метод коррекции ошибок, аналогичный методу Хауксфорда. В результате, при очень простой схемотехнике буфер имеет чрезвычайно низкий уровень искажений, такой же низкий уровень шумов и высокое быстродействие. Идеальное место для него на выходе ЦАП или предварительного усилителя.

По аналогичному принципу Малкольм Хауксфорд построил выходной буфер в преобразователе ток-напряжение для своего ЦАП и остался им весьма доволен.

В отличие от прототипа данная схема работает на постоянном и переменном токах и не требует смещения первого каскада (хотя в схеме элемент смещения указан при необходимости точной термокомпенсации).

ПРИНЦИПИАЛЬНАЯ СХЕМА.

Принципиальная схема буфера представлена на рисунке:

Увеличение по клику

Вкратце суть метода такова. Транзисторы Т3 и Т4 представляют собой токовое зеркало. Их выходные токи питают входной и выходной транзисторы. Таким образом, изменение тока через один транзистор (Q1) вызывает аналогичное изменений тока через другой (Т2). За счёт того, что транзисторы комплементарны, происходит взаимная компенсация нелинейности их характеристик.

ХАРАКТЕРИСТИКИ СХЕМЫ.

  • Общее гармоническое искажения: типовое значение менее — 0.001% , на опытном экземпляре измерили — 0.00025%!
  • линейность искажений: искажения удваиваются на частотах выше 55КГц, а затем удваиваются каждую октаву.
  • уровень шумов: ниже 138db на 1 кГц
  • Полоса частот: более 50 МГц (зависит от применённых транзисторов).
  • Ограничение сигнала: + 4,9 В -6.3В
  • Максимальный выходной ток: -10mA
  • Входное сопротивление: 10k — 100k (зависит от входных цепей, см. далее по тексту).
  • Выходное сопротивление:<52R.
  • смещение нуля на выходе: менее 5 мВ.

Конструкция и детали.

Для удобства повторения Главный редактор «РадиоГазеты» разработал печатную плату устройства(45мм Х 45мм):

Скачать чертеж печатной платы в формате Layout можно .

Индуктивность L1 — ферритовая бусинка.
Для обеспечения высокой термостабильности каскада транзисторы Т1-Т3 и Т2-Т4 нужно попарно склеить задними стенками. Вот как это выглядело на макете:

НАСТРОЙКА БУФЕРА.

Если вы не хотите что-то подбирать и настраивать в данной схеме, то просто установите все постоянные резисторы с указанными на схеме номиналами. Даже при таком подходе схема обеспечивает очень высокие параметры.

Если вы стремитесь к идеалу, тогда запаситесь терпением!

Для достижения максимального качества транзисторы лучше взять из одной партии или отобрать хотя бы с помощью китайского мультиметра.

  1. Для начала переводим мультиметр в режим проверки диодов и замеряем напряжение Uбэ у транзисторов Т4 и Т3.
  2. По полученным значениям вычисляем номиналы резисторов: R1=R2=(60мВ+(UбэТ4-UбэТ3))/1мА
  3. Запаиваем транзисторы и резисторы с получившимися номиналами в схему.
  4. Закорачиваем вход на землю. Резистором R5 устанавливаем половину от напряжения источника положительной полярности (по схеме +10В/2=+5В) в контрольной точке «ТР».
  5. Выходное напряжение схемы обычно не превышает 10мВ. Если для вас это недопустимо много, можете выставить абсолютный ноль с помощью триммера R9.
  6. Если есть необходимые приборы, то минимизировать нелинейные искажения можно с помощью триммера R1.

На этом настройка схемы закончена, а все подстроечные резисторы рекомендуется заменить на постоянные с ближайшим номиналом.

ДОРАБОТКА И УЛУЧШЕНИЯ.

  1. транзисторы серии BC3x7 имеют низкий уровень шума и низкое внутреннее сопротивление. Также они имеют увеличенный кристалл (по сравнению с ВС550, ВС560), что повышает их тепловую инерционность и делает схему более термостабильной. Но они низкочастотные и, для улучшения быстродействия схемы, в случае их применения придётся увеличить токи Т1 и Т2 до 2мА. Для повышения стабильности, возможно, придётся подкорректировать номиналы элементов входного снайбера. Но те, кто попробовал использовать транзисторы BC3x7 вместо BC5xx, остались очень довольны качеством звучания и больше не хотят возвращаться к последним.
  2. можно дополнительно расширить полосу пропускания буфера за счёт увеличения тока через транзисторы Т1 и Т2. Особенно это рекомендуется сделать в случае применения транзисторов типа BC3x7. Для этого нужно уменьшить номинал резисторов R1 и R2 и увеличить R5 для поддержания баланса между Uкэ Т2 и Т4.
  3. Входное сопротивление буфера может быть повышено путем увеличения номинала резистора R8 до 100k. Это может привести к повышению постоянного напряжения смещения на выходе и увеличить чувствительность к нестабильности напряжения питания. Впрочем, предварительные каскады чаще всего питаются от стабилизированного источника и эта проблема для них не актуальна.
  4. Выходное сопротивление схемы можно уменьшить за счёт резистора R10. Однако его не следует ставить менее 4,7 Ом, так как в этом случае схема может возбуждаться. Указанное на схеме значение в 47 Ом оптимально для совместимости с сигнальными кабелями. Дело в том, что межблочные кабели являются, по сути, линиями передачи с реактивным сопротивлением и без согласования входных и выходных импедансов могут возникать резонансные явления или как минимум кабель превращается в антенну. Выходное сопротивление в 22-47 Ом эффективно демпфирует резонансы в кабеле, устраняя тем самым все побочные явления.

Статья подготовлена по материалам Интернета.

2758




Буферный каскад CD плеера собран на эксклзюивной печатной плате с фольгой 100 микрон покрытой золотом



Буферный каскад CD плеера

Буферный каскад построен на одних из лучших по звучанию кремниевых ВЧ транзисторах КТ602 включенных по схеме с общей базой. Смещение для КТ602 организованно на транзисторах BC-140 Siemens, а в блоке питания стоят параллельные стабилизаторы на легендарных германиевых транзисторах П605. Между КТ602 и выходным каскадом на таком же, как в блоке питания - германиевом транзисторе П605 сделана гальваническая связь, а выходной - П605 нагружен на дроссель Телефункен. На выходе буфера стоит единственный бумаго-масляный немецкий конденсатор. В буферном каскаде CD плеера применены резисторы Allen Bradley и другие винтажные детали.

Еретический вывод

Много лет я уделял внимание и делал только ламповые конструкции, но жизнь показала, что в отдельных местах звуковых устройств транзисторы заменить нечем. В моих разработках это прежде всего источники питания, которые влияют на звучание - исключительно сильно. Именно их свойствами определяются: микродинамика, разрешение, тембры и скорость звука. Как я ни упирался, и не доказывал себе, что лучше ламп могут быть только лампы, сейчас «созрел» до полностью транзисторного тракта, от МС головки, до выходного каскада. У меня есть чуйка, что я могу разработать что-то особое, совсем непохожее на выпускаемое электронной промышленностью и паяемое самодельщиками. Благо накопился довольно большой опыт по изготовлению «играющих» печатных плат и «музыкальных» стабилизаторов напряжения. Вот и применю свои познания в транзисторном буферном каскаде CD плеера.

В свои гибридные цифро-аналоговые преобразователи я ставлю исключительно параллельные стабилизаторы напряжения на германиевых ВЧ транзисторах п605, признанных, одними из самых музыкальных транзисторов бывшего СССР. С «подачи» Игоря Семынина и Сергея Рубцова из Новосибирского «НЭМ» я начал эксперименты с советскими транзисторами КТ602. Эти два наименования полупроводниковых приборов разработки СССР входят в десятку лучших по звуку из нескольких тысяч, выпускавшихся при «совке». КТ602 проявили себя наилучшим образом, и хоть они требуют тщательного подбора, по музыкальным свойствам «заткнут за пояс» многие зарубежные элитные наименования. Их кристалл покоится на золотой подложке, и вообще - КТ602, транзистор по совокупности свойств (ИМХО) - уникальный.

Германиевые П605 и кремниевые кт602 входят в десятку лучших и по звуку устраивают меня полностью и целиком. Не вдаваясь в тонкости могу сказать, что лучший результат дают пары и тройки РАЗНЫХ транзисторов, подобранные в единую связку, когда каждый из них подчеркивает достоинства и маскирует недостатки другого.

Первая моя полностью транзисторная «ласточка» буферный каскад, предназначенный для замены операционных усилителей в популярных у аудиофилов CD плеерах. Наибольший эффект дает его применение в аппаратах фирм Marantz и Philips, CD плееры японского производства TEAC, Sony, Pioneer и т.д. менее податливы. В японских аппаратах применение буферного каскада дает результат в ряде престижных моделей, если они не апгрейдированы производителем изначально. Буферный каскад собран на отобранных винтажных транзисторах производства СССР и позволяет CD плеерам раскрыться, в их звуке появляется заметная прозрачность, динамика и аналоговость.

Толчок к реализации идеи дали схемные решения Сергея Рубцова. На мой взгляд результат получился не просто хорошим, а ОЧЕНЬ хорошим, что важно - не дорогим. Цена буферного каскада CD плеера зависит от комплектации, но находится в пределах максимум нескольких сотен долларов, что для техники этого уровня - совсем не много.

Путь сигнала сделан максимально чистым и коротким, без «горбов и ям»: Два транзистора (очень хороших в звуковом плане), резистор, дроссель и конденсатор, плюс - обвязка. Все элементы - максимально качественные. Если сравнивать буферный каскад с операционными усилителями, стоящими во всех CD плеерах, это как - глоток горного воздуха. Монтаж буферного каскада предельно прост: Вход, Выход, Питание. Плате нужен силовой трансформатор или просто две вторичные обмотки со средней точкой и напряжением 2х12 Вольт.

Выходной каскад

Мне тут не раз задавали вопрос, почему на выходе буферного каскада CD плеера я установил не трансформатор, а дроссель? Одним конденсатором (дорогим бумаго-маслянным) было бы - меньше.

С трансформатором у меня не «срослось» т.к. он увеличивает конечную стоимость буферного каскада. Плюс - имеющиеся «кандидаты» из винтажного железа, подходящие по размерам, лучше звучали как дроссель, а кандидатов было не так много. Я не раз сравнивал по звуку трансформатор и дроссель, трансформатор в этой схеме заметно снижал разрешение, поэтому оставил дроссель с конденсатором. Если кому-то потребуется спец версия, я конечно намотаю выходные трансформаторы 1 к 1 на дорогом и большом железе, а буферный каскад пойдет по стоимости «бонусом» к трансформаторам.

Спрашивали: Не проще ли было поставить на выходе вместо дросселя на винтажном железе резистор с конденсатором, тем более, что кошерных резисторов гораздо больше, чем кошерного железа?

Проще конечно, но даже с «кошерным» резистором звук получается - сильно проще. Примененные в буферном каскаде CD плеера дроссели Telefunken, как раз идеальны по соотношению цена/качество/размеры. А посадочное место позволяет при случае поставить дроссели на довоенном телефункеновском железе. Я стараюсь привязываться к компонентам, которые относительно доступны или они имеются у меня в количестве несколько десятков штук, чтобы хватило на тираж плат. Когда закончатся - сделаем новое изделие, с другими компонентами. Это своеобразные ступеньки роста: сделал - послушал - обдумал - сравнил... И можно делать следующее устройство, серийный экземпляр всегда под рукой, можно сравнить и сделать выводы.

С резистором в буферном каскаде звук был заметно хуже, чем с индуктивной нагрузкой. Хочу попробовать применить не винтажное железо, которое трудно доставать в количестве, а современные магнитные материалы, например - хитачевские аморфные сердечники.

В этом году придется заняться поиском материала для трансформаторных DAC -ов, так как тонкое железо от выходных трансформаторов Siemens уже на исходе и вряд ли его запасы пополнятся. Я пробовал несколько аудиофильских вариантов железа М4 и М6, современный пермаллой, разной толщины и состава. В принципе, эти материалы вполне рабочие, если мотать их винтажным проводом, но так жирно и вкусно как старое железо они конечно не играют. Играют по-своему: чисто, тонко, холодновато и прозрачнее чем большинство винтажных пластин.

Я не сомневаюсь - эти свойства можно уравновесить проводом и подбором в буферный каскад CD плеера других деталей. И в целом будет гармонично. Оно все так непредсказуемо сплетается и сплавляется (энергии, окраски, взаимодействия) - иногда все верно сделано, правильные провода, покрытые мхом, а музыка еле просачивается. А в другой системе из новодела, музыка просто льется…

Я по-прежнему не наблюдаю прямой, линейной зависимости "чем старше, тем лучше". Есть пики и провалы, пиков больше приходится на 1920-1940, меньше на последующие годы, но дореволюционные провода, как правило - вообще никуда не годятся. Поэтому буду продолжать двигаться ощупью и без оглядки на догмы.

Звук

Буферный каскад CD плеера испытал во всех ракурсах и имею результаты его прослушивания с микросхемами ЦАП -ов: TDA1540, TDA1541, РСМ58 и PCM56.

Лучше всего он спелся с микросхемой TDA1540, с которой дал сочный, энергичный и бархатный саунд. Я такого даже не ожидал, и хрен такой звук получится у новичка с лампами! ЦАП TDA1541 демонстрирует примерно то же самое. Полноценное преобразование ток/напряжение без обратных связей вытягивает из TDA1540 более разборчивые и чистые тихие звуки. Музыкальность TDA1540 с германиевым буферным каскадом - на высшем уровне.

Резюме: Однотактный германиевый эмиттерный повторитель, нагруженный на дроссель телефункен, не оставляет шансов ламповым схемам на дохлых ЕСС83. Операционники с этой схемой, тем более - тягаться не в состоянии.

По следам этого буферного каскада скоро сделаю еще один преобразователь для самых дорогих моделей CD плееров, с транзистором на входе и прямонакальным триодом.

Схема питания

Можно ли буферный каскад CD плеера запитать от одной, а не от двух обмоток силового трансформатора? Чтобы не городить специальный транс с двумя обмотками, если в CD плеере их нет. В Филипсах серий 00 напряжение +- 5 вольт таким образом и получают. В принципе - можно сделать и так, тогда два двухполупериодных выпрямителя превратятся в мостовой выпрямитель со средней точкой и нужны будут обмотки с напряжением 16-0-16 вольт.

Настройка транзисторного буферного каскада (и один узел схемы) для разных микросхем ЦАП -ов отличается: Для РСМ56, РСМ58, РСМ63, а также, для ЦАП -ов аналог девайс можно применить силовой трансформатор с одной обмоткой, имеющей среднюю точку и напряжение 12-0-12 V.

Для микросхем ЦАП -ов TDA1540 и TDA1541 нужно все-таки использовать две отдельные обмотки со средней точкой. Напряжений надо два, 12-0-12 на минусовое плечо и чуть больше на плюсовое. Если речь идет о микросхеме TDA1540, напряжение должно быть 14-0-14 V.

Таких напряжений питания требует настройка, чтобы при максимальных амплитудах не было ограничения одной полуволны при работе от TDA1540. Схема буферного каскада CD плеера для разных микросхем ЦАП -ов требует некоторых изменений.

Напряжения силового трансформатора

Можно ли применить обмотки не 12-0-12 или 14-0-14 V, а допустить какую-то вилку, скажем от 11-0-11 до 18-0-18 V.

Вилка напряжений определяется тем что:

При недостаточных значениях напряжения вторичных обмоток параллельные стабилизаторы работают с малым током, что ухудшает звук. При излишне больших значениях напряжения, стабилизаторы могут перегреться. Поскольку напряжение питания буферного каскада CD плеера более 10 В, то при недосмотре - мощность, выделяемая на транзисторе П605 запросто может составить порядка 1 Вт, что не просто много, а катастрофически много для германия без радиатора.

Правда есть плюс, транзисторы П605 в параллельных стабилизаторах не горят, а "сваливаются в штопор", ток через них резко возрастает, а напряжение, из-за балластного резистора - падает. Если CD плеер с буферным каскадом вовремя не выключить, то балласт - выгорит. Поэтому, желательно соблюдать рекомендуемые режимы как можно точнее, при которых транзисторы стабилизаторов теплые и не перегреваются.

Германиевые параллельные стабилизаторы не должны перегреваться, были бы последовательные, не было бы никаких проблем. Но с параллельными стабилизаторами буферный каскад CD плеера звучит заметно лучше, глубже и сочнее. Значит нужно создать им комфортные, тепличные условия.

По факту, следовало бы на радиаторы поставить транзисторы параллельных стабилизаторов, а не выходных повторителей. Зато с транзисторами повторителей на радиаторах есть возможность поиграться с режимами и разогреть их как следует, если руки чешутся. Радиаторы небольшого размера под старые типы транзисторов, как оказалось - дефицит, и их еще надо поискать. Поэтому вариант "поставить на радиаторы ВСЕ" отпал.

Похожие статьи