Жидкокристаллические мониторы. Как устроен жк дисплей Как работает жк монитор

Принято выделять три агрегатные состояния вещества — твердое, жидкое и газообразное. Но некоторые органические вещества способны при плавлении в определенной фазе проявлять свойства, присущие как кристаллам, так и жидкостям. Приобретая текучесть, свойственную жидкостям, они в этой фазе не теряют упорядоченности молекул, свойственной твердым кристаллам. Эту фазу вполне можно назвать четвертым агрегатным состоянием. Правда, не следует забывать, что имеют ее только некоторые вещества и только в определенном диапазоне температур.

Пространственная ориентация молекул ЖК в так называемом положении отдыха называется порядком жидких кристаллов. Согласно классификации Фриделя, различают три основные категории порядка ЖК: смектический, нематический и холестерический (рис.1).

Смектические ЖК наиболее упорядочены и ближе по структуре к обычным твердым кристаллам. У них, кроме простой взаимной ориентации молекул, присутствует еще и деление их на плоскости.

Направление преимущественной ориентации длинных осей молекул в жидких кристаллах обозначается вектором единичной длины, называемым директором.

Основной интерес представляют материалы с нематическим порядком, они применяются в современных жидкокристаллических панелях всех типов (TN, IPS и VA). В нематиках нормальным состоянием является положение молекул с упорядоченной по всему объему ориентацией молекул, свойственной кристаллам, но с хаотическим положением их центров тяжести, свойственным жидкостям. Молекулы в них сориентированы относительно параллельно, а вдоль оси директора смещены на различные расстояния.

Жидкие кристаллы с холестерическим порядком по структуре напоминают нематики, разбитые на слои. Молекулы в каждом последующем слое повернуты относительно предыдущего на некоторый небольшой угол и директор плавно закручивается по спирали. Эта слоистая природа, образуемая оптической активностью молекул, и является основным признаком холестерического порядка. Холестерики иногда называют «скрученными нематиками».

Граница между нематическим и холестерическим порядками является в некоторой степени условной. Холестерический порядок можно получить не только у холестерического материала в чистом виде, но и при помощи добавления к нематическому материалу специальных добавок с содержанием хиральных (оптически активных) молекул. Такие молекулы содержат асимметрический атом углерода и, в отличие от молекул нематиков, являются зеркально-несимметричными.

Порядок в жидких кристаллах определяется междумолекулярными силами, которые создают упругость ЖК материала. Да, здесь можно говорить именно об упругих свойствах, хотя природа их отлична от упругих свойств обычных кристаллов, так как жидкие кристаллы все же обладают текучестью. В нормальном (или основном) состоянии молекулы стремятся вернуться в свое «положение отдыха», например, в нематическом материале — в положение с одинаковой ориентацией директора.

Упругость ЖК меньше упругости обычных кристаллов на несколько порядков и дает совершенно уникальную возможность управлять их положением при помощи внешних воздействий. Таким воздействием может служить, к примеру, электрическое поле.

Теперь подробней о том, каким образом это поле может влиять на ориентацию молекул.

Возьмем образец, состоящий из двух стеклянных пластин, пространство между которыми заполнено нематическим материалом. Расстояние между верхней и нижней пластиной и, соответственно, толщина слоя жидких кристаллов составляет несколько микрон. Для задания нужной ориентации директора молекул в материале применяется специальная обработка поверхности подложек. Для этого на поверхность наносится тонкий слой прозрачного полимера, после чего специальной протиркой (rubbing) поверхности придается рельеф — тончайшие бороздки в одном направлении. Вытянутые молекулы кристаллов в слое, непосредственно соприкасающемся с поверхностью, ориентируются вдоль рельефа. Межмолекулярные силы заставляют все остальные молекулы принимать такую же ориентацию.

Упорядоченное расположение молекул жидких кристаллов определяет анизотропию их некоторых физических свойств (напомню, анизотропией называется зависимость свойств среды от направления в пространстве). Жидкости с их хаотичным расположением молекул являются изотропными. А вот жидкие кристаллы уже обладают анизотропией, что является важным качеством, позволяющим влиять на характеристики проходящего через них света.

Для управления положением молекул используется анизотропия диэлектрической проницаемости. Она представляет собой разность

Δε = ε || + ε ⊥ где ε || — диэлектрическая проницаемость в направлении, параллельном вектору директора, ε ⊥ — диэлектрическая проницаемость в направлении, перпендикулярном вектору директора. Значение Δε может быть как положительным, так и отрицательным.

Возьмем образец, состоящий из двух стеклянных пластин с расстоянием между пластинами в несколько микрон, заполненный нематическим материалом и запечатанный. Для задания нужной ориентации директора молекул в материале применяется специальная обработка поверхности подложек, для этого на поверхность наносится тонкий слой прозрачного полимера, после чего специальной протиркой поверхности придается рельеф — тончайшие бороздки в одном направлении. Вытянутые молекулы кристаллов в слое, непосредственно соприкасающемся с поверхностью, ориентируются вдоль рельефа, межмолекулярные силы заставляют все остальные молекулы принимать такую же ориентацию. Если создать в образце электрическое поле, энергия жидких кристаллов в этом поле будет зависеть от положения молекул относительно направления поля. В случае, если положение молекул не соответствует минимальной энергии, произойдет их поворот на соответствующий угол. В материале с положительным значением диэлектрической проницаемости (положительной диэлектрической анизотропией) молекулы будут стремиться повернуться вдоль направления электрического поля, в материале с отрицательной диэлектрической анизотропией — поперек направления поля. Угол поворота, соответственно, будет зависеть от приложенного напряжения.

Пусть материал в образце имеет положительную диэлектрическую анизотропию, направление электрического поля перпендикулярно исходной ориентации молекул (рис.2). При подаче напряжения молекулы будут стремиться повернуться вдоль поля. Но они изначально сориентированы по рельефу внутренних поверхностей образца, созданных протиркой и связаны с ними довольно значительным сцеплением. Как следствие, при изменении ориентации директора будут возникать крутящие моменты обратного направления. Пока поле достаточно слабое, силы упругости удерживают молекулы в неизменном положении. При увеличении напряжения, начиная с некоторого значения E c , ориентационные силы электрического поля превышают силы упругости, и начинает происходить поворот молекул. Эта переориентация под воздействием поля носит название перехода Фредерикса. Переход Фредерикса является фундаментальным для организации управления жидкими кристаллами, на нем основан принцип работы всех ЖК-панелей.

Образуется работоспособный механизм:

  • с одной стороны, электрическое поле будет заставлять молекулы жидких кристаллов поворачиваться на нужный угол (в зависимости от значения приложенного напряжения);
  • с другой стороны, упругие силы, вызванные межмолекулярными связями, будут стремиться вернуть исходную ориентацию директора при сбросе напряжения.

Если исходная ориентация директора и направления электрического поля не строго перпендикулярны, то пороговое значение поля E c снижается, благодаря чему становится возможным воздействовать на положение молекул значительно меньшим полем.

В этом месте придется немного отвлечься от жидких кристаллов, для того, чтобы пояснить понятия «поляризация света» и «плоскость поляризации» — без них дальнейшее изложение будет невозможно.

Свет можно представить, как поперечную электромагнитную волну, электрическая и магнитная составляющие которой колеблются во взаимно перпендикулярных плоскостях (рис.3).

Естественный свет (называемый также естественно поляризованным или неполяризованным) содержит колебания вектора E , равновероятные во всех направлениях, перпендикулярных вектору k (рис.4).

Частично поляризованный свет имеет преимущественное направление колебания вектора E . У частично поляризованного света в поле световой волны амплитуда проекции Е на одно из взаимно перпендикулярных направлений всегда больше, чем на другое. Отношение между этими амплитудами определяет степень поляризации.

Линейно поляризованный свет — это свет, имеющий единое направление вектора E для всех волн. Понятие линейно поляризованного света является абстрактным. На практике, говоря о линейно поляризованном свете, обычно имеют в виду частично поляризованный свет с высокой степенью поляризации.

Плоскость, в которой лежат вектор E и вектор направления волны k , называется плоскостью поляризации.

Теперь вернемся к ЖК.

Вторым после диэлектрической анизотропии важнейшим физическим свойством жидких кристаллов, используемым для управления световым потоком через них, является оптическая анизотропия. Жидкие кристаллы имеют различные значения коэффициента преломления света для параллельного и перпендикулярного директору направления распространения. То есть, скорость распространения светового луча параллельно или перпендикулярно директору будет различной — при более высоком коэффициенте она, как известно, будет ниже. Оптическая анизотропия или анизотропия коэффициента преломления есть разность между двумя коэффициентами:

Δ n = n || + n ⊥ где n || — коэффициент преломления для плоскости поляризации, параллельной директору; n ⊥ — коэффициент преломления для плоскости поляризации, перпендикулярной директору.

Присутствие в материале двух различных значений для n || и n ⊥ вызывает эффект двойного лучепреломления. Когда свет попадает в двулучепреломляющий материал, каким является нематик, происходит разбиение электрического полевого компонента световой волны на два векторных компонента — вибрирующий в «быстрой» оси и вибрирующий в «медленной» оси. Эти компоненты носят название соответственно обыкновенного (ordinary) и необыкновенного (extraordinary) лучей. Направления поляризации обыкновенного и необыкновенного лучей взаимно ортогональны. А наличие в материале «быстрой» и «медленной» осей обусловлено тем, о чем говорилось выше — различными коэффициентами преломления для лучей, распространяющихся соответственно параллельно или перпендикулярно направлению директора.

На рис.5 показано распространение волн вдоль «быстрой» и «медленной» осей. Нужно подчеркнуть, что ось в данном случае — это не фиксированная прямая, а направление плоскости, в которой происходят колебания волны.

Поскольку фазовые скорости обыкновенного и необыкновенного луча различны, разность их фаз будет меняться по мере распространения волны. Изменение разности фаз этих ортогональных компонентов вызывает изменение направления поляризации световой волны. На рисунке для наглядности сумма ортогональных компонентов представлена результирующим вектором E r . Можно видеть, что по мере распространения волны происходит вращение направления вектора E r . Таким образом, сложение волн на выходе из двулучепреломляющего материала даст волну с измененным относительно исходного направлением поляризации.

Угол поворота плоскости поляризации будет зависеть от ориентации молекул в материале.

Конструкция панели

Существует несколько технологий ЖК-панелей. Для иллюстрации конструкции в данном случае приведена TN, как наиболее распространенная (рис.6).

Все жидкокристаллические панели для мониторов являются трансмиссивными — изображение в них формируется за счет преобразования светового потока от расположенного сзади источника. Модуляция светового потока осуществляется за счет оптической активности жидких кристаллов (их способности вращать плоскость поляризации проходящего света). Реализуется это следующим образом. При прохождении через первый поляризатор свет от ламп подсветки становится линейно поляризованным. Далее он следует через слой жидких кристаллов, заключенный в пространстве между двумя стеклами. Положение молекул ЖК в каждой ячейке панели регулируется электрическим полем, создаваемым за счет подачи напряжения на электроды. От положения молекул зависит поворот плоскости поляризации проходящего света. Таким образом, за счет подачи на ячейки нужного значения напряжения происходит управление поворотом плоскости поляризации.

Для доставки напряжения к субпикселю служат вертикальные (data line) и горизонтальные (gate line) линии данных, представляющие собой металлические токопроводящие дорожки, нанесенные на внутреннюю (ближайшую к модулю подсветки) стеклянную подложку. Электрическое поле, как уже говорилось, создается напряжением на электродах — общем и пиксельном. Напряжение используется переменное, поскольку применение постоянного напряжения вызывает взаимодействие ионов с материалом электродов, нарушение упорядоченности расположения молекул ЖК-материала, и приводит к деградации ячейки. Тонкопленочный транзистор играет роль переключателя, который замыкается при выборе адреса требуемой ячейки на линии сканирования, разрешает «записать» требуемое значение напряжения и по окончании цикла сканирования вновь размыкается, позволяя сохранять заряд в течение некоторого периода времени. Зарядка происходит в течение времени T = T f /n , где T f — время вывода кадра на экран (например, при частоте обновления 60 Гц время вывода кадра составляет 1 с / 60 = 16.7 мс), n — количество строк панели (например, 1024 для панелей с физическим разрешением 1280х1024). Однако, собственной емкости жидкокристаллического материала недостаточно для сохранения заряда в интервале между циклами обновления, что должно вести к спаду напряжения и, как следствие, снижению контрастности. Поэтому, кроме транзистора, каждая ячейка оснащается запоминающим конденсатором, который также заряжается при открытии транзистора и помогает компенсировать потери напряжения до начала очередного цикла сканирования.

Вертикальные и горизонтальные линии данных при помощи подклеенных плоских гибких шлейфов соединены с управляющими микросхемами панели — драйверами, соответственно столбцовым (source driver) и строчным (gate driver), которые обрабатывают поступающий с контроллера цифровой сигнал и формируют соответствующее полученным данным напряжение для каждой ячейки.

После слоя жидких кристаллов расположены цветовые фильтры, нанесенные на внутреннюю поверхность стекла панели и служащие для формирования цветной картинки. Используется обычный трехцветный аддитивный синтез: цвета образуются в результате оптического смешения излучений трех базовых цветов (красного, зелёного и синего). Ячейка (пиксель) представляет собой три раздельных элемента (субпикселя), каждому из которых сопоставлен расположенный над ним цветовой фильтр красного, зеленого или синего цвета, комбинациями из 256 возможных значений тона для каждого субпикселя можно получить до 16,77 миллионов цветов пикселя.

Структура панели (металлические вертикальные и горизонтальные линии данных, тонкопленочные транзисторы) и пограничные области ячеек, где нарушена ориентация молекул, должны быть скрыты под непрозрачным материалом, чтобы избежать нежелательных оптических эффектов. Для этого применяется так называемая черная матрица (black matrix), которая напоминает тонкую сетку, заполняющую промежутки между отдельными цветовыми фильтрами. В качестве материала для черной матрицы используется хром или черные смолы.

Заключительную роль в формировании картинки играет второй поляризатор, часто называемый анализатором. Его направление поляризации смещено относительно первого на 90 градусов. Чтобы представить назначение анализатора, можно условно удалить его с поверхности подключенной панели. В этом случае мы увидим все субпиксели максимально освещенными, то есть ровную белую заливку экрана вне зависимости от выведенной на него картинки. От того, что свет стал поляризованным, и плоскость его поляризации вращается каждой ячейкой по-разному, в зависимости от приложенного к ней напряжения, для наших глаз пока ничего не изменилось. Функция анализатора как раз и состоит в отсечении нужных компонентов волн, что позволяет увидеть на выходе требуемый результат.

Теперь о том, как это отсечение нужных компонентов происходит. Возьмем для примера поляризатор с вертикальным направлением поляризации, т.е. пропускающий волны, ориентированные в вертикальной плоскости.

На рис.7 показана волна, распространяющаяся в плоскости, лежащей под некоторым углом относительно вертикального направления поляризации. Вектор электрического поля падающей волны можно разложить на две взаимно перпендикулярных составляющих: параллельную оптической оси поляризатора и перпендикулярную ей. Первая составляющая, параллельная оптической оси, проходит, вторая (перпендикулярная) блокируется.

Отсюда очевидны и два крайних положения:

  • волна, распространяющаяся в строго вертикальной плоскости, будет пропускаться без изменений;
  • волна, распространяющаяся в горизонтальной плоскости, будет блокироваться, как не имеющая вертикальной составляющей.

Эти два крайних положения соответствуют полностью открытому и полностью закрытому положению ячейки. Подытожим:

  • Для максимально полной блокировки проходящего света ячейкой (субпикселем) требуется, чтобы плоскость поляризации этого света была ортогональна плоскости пропускания анализатора (направлению поляризации);
  • Для максимального пропускания света ячейкой плоскость его поляризации должна совпадать с направлением поляризации;
  • Плавно регулируя напряжение, подаваемое на электроды ячейки, можно управлять положением молекул жидких кристаллов и, как следствие, поворотом плоскости поляризации проходящего света. И тем самым изменять количество пропускаемого ячейкой света.

Так как угол поворота плоскости поляризации зависит от расстояния, пройденного светом в слое жидких кристаллов, этот слой должен иметь строго выдержанную толщину по всей панели. Для поддержания равномерности расстояния между стеклами (со всей нанесенной на них структурой) применяются специальные распорки (spacers).

Простейшим вариантом являются так называемые шариковые распорки (ball spacers). Они представляют собой прозрачные полимерные или стеклянные шарики строго определенного диаметра и наносятся на внутреннюю структуру стекла путем распыления. Соответственно, располагаются они хаотично по всей площади ячейки и их наличие отрицательно влияет на ее однородность, так как распорка служит центром для дефектной области и непосредственно возле нее молекулы ориентируются неправильно.

Применяется и другая технология — распорки колонного типа (column spacer, photo spacer, post spacer). Располагаются такие распорки с фотографической точностью под черной матрицей (рис.8). Преимущества такой технологии очевидны: повышение контрастности за счет отсутствия световых утечек возле распорок, более точный контроль однородности зазора за счет упорядоченного расположения распорок, повышение жесткости панели и отсутствие ряби при нажиме на поверхность.

Панель TN, конструкция которой была приведена на рис.6, является самой недорогой в производстве, что определяет ее доминирование на рынке массовых мониторов. Кроме нее существует еще несколько технологий, различающихся расположением, конфигурацией и материалом электродов, ориентацией поляризаторов, используемыми ЖК-микстурами, исходной ориентацией директора в жидкокристаллическом материале и т.д. Согласно исходной ориентации директора все существующие технологии можно разделить на две группы:

1. Планарная ориентация

Сюда относятся все IPS-технологии (S-IPS, SA-SFT и др.), а также FFS (в настоящее время — AFFS), разработанная и продвигаемая компанией Boe HyDis. Молекулы выравниваются горизонтально, параллельно основанию подложек, в направлении, заданном протиркой, верхняя и нижняя подложки протерты в одном направлении. Все электроды, как пиксельные, так и общие, находятся на одной стеклянной подложке панели — внутренней, вместе с линиями данных и транзисторами. В IPS-технологиях пиксельные и общие электроды расположены параллельно, чередуясь друг с другом (рис.9). Силовые линии поля проходят горизонтально, но под некоторым углом относительно направления протирки. Поэтому при подаче напряжения молекулы, обладающие в данном случае положительной диэлектрической анизотропией, стремясь выстроиться по направлению приложенного поля, поворачиваются в той же плоскости на угол, зависящий от его (поля) напряженности. В случае FFS общий электрод расположен под пиксельным — при такой конструкции приложенное к электродам напряжение образует электрическое поле, имеющее как горизонтальную, так и вертикальную составляющие. Если для IPS в приведенных на рис.9 координатных осях поле можно охарактеризовать как E y , то для FFS соответствующие значения будут выглядеть как E y и E z . Такое расположение силовых линий поля позволяет использовать ЖК-материалы как с положительной, так и с отрицательной диэлектрической анизотропией. Поворот молекул, аналогично IPS, происходит в той же плоскости по направлению горизонтальной составляющей поля, но при этом из-за меньшего количества пограничных зон поворачивается значительно большее количество молекул, что позволяет сузить ширину решетки черной матрицы и достичь более высокого отношения апертуры панели.

Одним из основных плюсов технологий с планарной ориентацией директора является крайне незначительный цветовой сдвиг (color shift) палитры при изменении угла обзора. Эта стабильность объясняется конфигурацией спирали, образуемой молекулами жидкокристаллического материала под действием поля, которая в данном случае имеет симметричную форму. На рис.9 схематично показано положение ЖК-молекул при поступлении напряжения на электроды — очевидно, что максимальный угол поворота достигается в средних слоях. Такая неоднородность обусловлена тем, что, как уже говорилось, ориентация молекул в нужном направлении параллельно основанию подложек получена за счет предварительной обработки (протирки) их поверхностей. Поэтому подвижность молекул в непосредственно граничащем с подложкой слое ограничивается рельефом подложки, а последующих близлежащих слоях — межмолекулярными силами. В результате под воздействием поля молекулы образуют спираль, напоминающую форму ленты с зафиксированными в одной плоскости концами и повернутой центральной частью. Существует понятие оптического пути, зависящего от коэффициента преломления среды, в которой распространяется луч и результирующего фазового набега по направлению его следования. Световые лучи, проходящие через слой жидких кристаллов, имеют различную длину оптического пути в зависимости от угла прохождения. Симметричная форма спирали молекул позволяет получить для каждого серого уровня точное дополнение длины оптического пути в своих верхней и нижней половинках, следствием является практически полное отсутствие зависимости отображаемых оттенков от углов обзора. Благодаря такому свойству, IPS-панели используются в подавляющем большинстве мониторов, ориентированных на работу с графикой.

При прохождении световой волны направление врашения результирующего вектора (см. рис.5) частично повторяет форму изгиба спирали, образуемой молекулами. Поэтому вращение плоскости поляризации при прохождении волны через первую часть ЖК-материала происходит в одном направлении, а через вторую — в противоположном. Различное, в зависимости от приложенного напряжения, запаздывание по фазе одного из компонентов волны приводит к тому, что направление результирующего вектора E r на выходе из слоя жидких кристаллов отличается от исходного, это позволяет определенной части светового потока пройти через анализатор. Светопропускающие плоскости поляризатора и анализатора, как и во всех остальных технологиях смещены относительно друг друга на угол 90 градусов.

Во всех выпускаемых в настоящее время вариациях (S-IPS, AFFS, SA-SFT) используется 2-доменная конструкция ячейки. Для этого применяются электроды зигзагообразной формы, которые вызывают поворот молекул в двух направлениях. Первоначальные версии, обозначавшиеся как просто «IPS» и «FFS», без приставок «Super» и «Advanced», были монодоменными, поэтому имели цветовой сдвиг и меньшие углы обзора (от 140/140 по падению контрастности до 10:1 у первых IPS).

К планарной ориентации обычно причисляется и твист-ориентация (или закрученная ориентация). Выравнивание молекул вдоль основания подложек в этом случае также достигается протиркой их поверхностей, с той разницей, что направления протирки верхней и нижней подложек смещены друг относительно друга. В результате такого выравнивания в нематическом материале директор образует спираль, напоминающую холестерическую, для правильного формирования спирали в ЖК-микстурах применяются специальные добавки с содержанием хиральных молекул. Твист-ориентация используется в наиболее широко распространенной TN (или TN+Film) технологии. Описывать и иллюстрировать конструкцию TN здесь не имеет смысла, это неоднократно сделано в многочисленных материалах на аналогичные темы — можно сказать, что она хорошо известна.

2. Гомеотропная ориентация

К этой группе принадлежат MVA и PVA. Директор ориентирован перпендикулярно основанию стеклянной подложки, это достигается применением в покрытии подложки поверхностно-активных веществ. Общие и пиксельные электроды расположены на противоположных подложках, поле ориентировано вертикально. Здесь используются жидкокристаллические материалы с отрицательной диэлектрической анизотропией, поэтому приложенное напряжение вызывает поворот молекул ЖК против силовых линий поля. MVA отличается наличием микроскопических продольных выступов (protrusion) для преднаклона молекул на верхней, либо на обеих подложках, поэтому исходное вертикальное выравнивание не является полным. Молекулы, выравниваясь по этим выступам получают небольшой преднаклон, что позволяет задать для каждой области (домена) ячейки определенное направление, в котором будет происходить поворот молекул под воздействием поля. В PVA такие выступы отсутствуют и в отсутствие напряжения директор ориентирован строго перпендикулярно поверхности, а пиксельный и общий электроды смещены друг относительно друга так, что создаваемое поле не строго вертикально, а содержит наклонный компонент (рис.10).

К технологиям с гомеотропной ориентацией директора относится также ASV, разработанная компанией Sharp. В пределах субпикселя здесь располагается несколько пиксельных электродов, имеющих форму квадратов со скругленными краями. Основные принципы те же: общий электрод расположен на противоположной подложке, молекулы в отсутствие поля ориентированы вертикально, используются жидкокристаллические материалы с отрицательной диэлектрической анизотропией. Создаваемое поле имеет выраженный наклонный компонент и молекулы, поворачиваясь против направления поля, создают структуру, направление директора в которой напоминает форму зонтика с центром в середине пиксельного электрода.

Существует также деление ЖК-модулей по типам в зависимости от состояния ячеек в отсутствие напряжения. Нормально белыми (normally white) называются панели, у которых при нулевом напряжении на ячейках они полностью открыты — соответственно, на экране воспроизводится белый цвет. Нормально белыми являются все панели, изготовленные по технологии TN. Панели, блокирующие прохождение света при отсутствии напряжения, относятся к нормально черным (normally black), к этому типу принадлежат все остальные технологии.

Модуль подсветки

...на базе флюоресцентных ламп

Сквозь тело панели (поляризаторы, электроды, цветофильтры и пр.) проходит лишь незначительная часть изначального светового потока от ламп подсветки, не более 3%. Поэтому собственная яркость модуля подсветки должна быть довольно значительной — как правило, применяемые лампы имеют яркость свыше 30000 кд/м 2 .

Для подсветки применяются CCFL — флуоресцентные лампы с холодным катодом (без нитей накала катодов). CCFL-лампа представляет собой запечатанную стеклянную тубу, наполненную инертным газом с небольшой примесью ртути (рис.11). Катоды в данном случае являются равноправными электродами, так как для питания используется переменный ток. В сравнении с лампами с накаливаемым (горячим) катодом, электроды у CCFL имеют другое строение и больший размер. Рабочая температура катода существенно отличается: 80-150 o C против приблизительно 900 o C у ламп с горячим катодом, при близкой температуре самой лампы — 30-75 o C и 40 o C соответственно. Рабочее напряжение для CCFL составляет 600-900 В, пусковое напряжение — 900-1600 В (цифры достаточно условные, так как спектр применяемых ламп очень широк). Образование света происходит при ионизации газа, а необходимым условием ее возникновения в лампе с холодным катодом является высокое напряжение. Поэтому для запуска такой лампы требуется на несколько сотен микросекунд подать на электроды напряжение, значительно превышающее рабочее. Приложенное высокое переменное напряжение вызывает ионизацию газа и пробой зазора между электродами, возникает разряд.

Пробой разрядного промежутка происходит по следующим причинам. В обычных условиях наполняющий лампу газ является диэлектриком. При появлении электрического поля небольшое количество ионов и электронов, всегда присутствующее в объеме газа, приходит в движение. Если подать на электроды достаточно высокое напряжение, электрическое поле сообщает ионам настолько высокую скорость, что при столкновении с нейтральными молекулами происходит выбивание из них электронов и образование ионов. Вновь образовавшиеся электроны и ионы, двигаясь под воздействием поля, также вступают в процесс ионизации, процесс принимает лавинообразный характер. После того, как ионы начинают получать достаточную энергию, чтобы выбивать электроны ударами о катод, возникает самостоятельный разряд. В отличие от ламп с горячим катодом, где разряд является дуговым, тип разряда в CCFL — тлеющий.

Поддержание разряда происходит за счет так называемого катодного падения потенциала. Основная часть падения потенциала (напряжения) в разряде приходится на прикатодную область. Ионы, пробегая этот промежуток с высокой разностью потенциалов, приобретают большую кинетическую энергию, достаточную для выбивания электронов из катода. Выбитые электроны за счет той же разности потенциалов ускоряются обратно в разряд, производя там новые пары ионов и электронов. Ионы от этих пар возвращаются к катоду, ускоряются падением напряжения между разрядом и катодом, и снова выбивают электроны.

Энергия электрического тока вызывает переход находящейся в лампе ртути из жидкого состояния в газообразное. При столкновении электронов с атомами ртути происходит выделение энергии, вызванное возвращением атомов из нестабильного состояния в стабильное. При этом возникает интенсивное излучение в ультрафиолетовой области — доля ультрафиолета составляет около 60% общего излучения.

Видимый свет образуется за счет люминофорного покрытия, нанесенного на внутреннюю поверхность стекла. Ультрафиолетовые фотоны, выпущенные ртутью, возбуждают атомы в люминофорном покрытии, повышая уровень энергии электронов. Когда электроны возвращаются к первоначальному уровню энергии, атомы в покрытии производят энергию в виде фотонов видимого света. Люминофор является важнейшим компонентом лампы, от него зависят характеристики спектра излучения. Спектр CCFL крайне неровный, в нем присутствуют ярко выраженные узкие пики. Даже использование многослойного люминофорного покрытия (в ущерб максимальной яркости) не позволяет «обогнать» кинескопные мониторы по цветовому охвату. Поэтому при производстве панели для достижения приемлемого цветового охвата необходим еще и точный подбор цветовых фильтров, полосы пропускания которых должны максимально соответствовать пикам спектра излучения ламп.

Максимальный цветовой охват в идеале могла бы обеспечить комбинация монохроматических источников основных цветов и качественных цветофильтров. На роль «квазимонохроматических» источников света могут претендовать так называемые лазерные светодиоды, но технология производства пока не обеспечивает рентабельность их применения в модулях подсветки. Поэтому на данный момент луший цветовой охват позволяют достичь модули подсветки на основе RGB-пакетов светодиодов (см. ниже).

Для формирования напряжения в несколько сотен вольт, необходимого для работы ламп, используются специальные преобразователи — инверторы. Регулировка яркости CCFL осуществляется двумя способами. Первый заключается в изменении тока разряда в лампе. Значение тока в разряде составляет 3-8 мА, значительная часть ламп имеет еще более узкий диапазон. При меньшем токе страдает равномерность свечения, при большем — существенно сокращается срок службы лампы. Недостаток этого способа регулировки состоит в том, что он позволяет изменять яркость в очень небольшом диапазоне, существенное ее снижение при этом невозможно. Поэтому мониторы с такой регулировкой при работе в условиях слабого внешнего освещения часто оказываются излишне яркими даже при нулевом значении яркости. При втором способе генерируется широтно-импульсная модуляция (ШИМ) питающего лампы напряжения (осуществляется управление шириной, т.е. длительностью импульса, за счет изменения ширины единичного импульса регулируется средний уровень напряжения.). В недостатки такому способу иногда приписывается появление мерцания ламп при реализации ШИМ на низкой частоте — 200 Гц и ниже, по сути же регулировка с помощью ШИМ представляет собой наиболее разумный подход, так как позволяет изменять яркость в широком диапазоне.

Для равномерного распределения света ламп применяется система из световодов, рассеивателей и призм. Вариантов организации распределения света существует множество, один из них показан на рис.12.

Решения с расположением ламп по верхней и нижней торцевым сторонам панели являются наиболее распространенными, такая компоновка позволяет значительно снизить общую толщину изделия. В 17- и 19-дюймовых модулях, как правило, устанавливается четыре лампы: две по верхней стороне и две по нижней. В торцевой части корпуса подобных панелей существуют специальные технологические отверстия, поэтому разбирать корпус для извлечения ламп не требуется (рис.13-б). Лампы при такой компоновке часто объединены в блоки из двух штук (рис. 13-а).

Другим вариантом является расположение ламп по всей площади обратной стороны модуля (рис.13-в) — такое решение применяется в многоламповых панелях с количеством ламп восемь штук и более, а также при использовании U-образных CCFL.

Минимальный срок службы ламп производителями панелей в настоящее время обычно указывается от сорока до пятидесяти тысяч часов (срок службы определяется как время, за которое светимость ламп снижается на 50%).

...на базе светодиодов

Помимо флюоресцентных ламп в качестве источника света могут также использоваться светодиоды (LED). Модули подсветки на базе светодиодов строятся либо на «белых» светодиодах, либо на пакетах светодиодов основных цветов (RGB-LED).

Наибольший цветовой охват дают пакеты RGB-LED. Дело в том, что «белый» светодиод представляет собой синий светодиод с желтым люминофорным покрытием, либо ультрафиолетовый светодиод с комбинацией «красного», «зеленого» и «синего» люминофорного покрытия. Спектр «белых» светодиодов не избавлен от всех недостатков спектра флюоресцентных ламп. Кроме того, в отличие от «белых» светодиодов, пакет RGB-LED позволяет в оперативном режиме корректировать цветовую температуру подсветки за счет раздельного управления интенсивностью свечения каждой группы светодиодов основных цветов.

В итоге, достигаются две цели:

  • расширяется цветовой охват за счет более идеального спектра подсветки,
  • расширяются возможности цветокалибровки: к типовому методу на основе таблиц пересчета цветовых координат для пикселей изображения добавляется возможность корректировки цветового баланса задней подсветки.

Большая крутизна вольт-амперной характеристики светодиодов не позволяет плавно регулировать яркость излучения в широких диапазонах. Но поскольку прибор допускает работу в импульсном режиме, на практике для регулировки яркости светодиодов (как и для флюоресцентных ламп) чаще всего применяется метод широтно-импульсной модуляции.

Олег Медведев, Максим Проскурня

Большинство современных LCD мониторов имеют достаточно простое построение, если рассматривать его на уровне чипов, т.е. в мониторе мы видим сейчас две или три крупных микросхемы. Функциональное назначение этих микросхем в большинстве случаев является типовым, несмотря на то, что выпускаются они разными производителями и имеют различную маркировку. А так как микросхемы выполняют одинаковые функции, то их входные/выходные сигналы будут практически идентичными, т.е. основное отличие микросхем заключается в их характеристиках и цоколевке корпуса. Именно поэтому к большинству современных LCD мониторов, невзирая на множество их торговых марок и множество различных моделей, можно применять одинаковые подходы при диагностике неисправностей и ремонте. Кроме идентичной функциональной схемы, почти все LCD мониторы имеют одну и ту же схему компоновки, т.е. практически все производители пришли к одинаковой схеме распределения электронных компонентов монитора по различным печатным платам.

Итак, если посмотреть на современный LCD монитор, то внутри него мы найдем, как правило, саму LCD-панель и три печатные платы (рис.1):

Рис.1

- основную плату управления и обработки сигналов (Main PCB );

- плату блока питания и инвертора задней подсветки (Power PCB );

- плату лицевой панели управления.

Межблочные связи при такой компоновке монитора демонстрирует рисунок 2.

Рис.2

Многие современные мониторы могут использоваться как USB-хаб, к которому могут подключаться различные USB устройства. Поэтому в составе монитора может появиться еще одна печатная плата, соответствующая USB-хабу, но наличие этой платы, естественно, является опциональным.

На основной плате управления располагаются микропроцессор монитора и скалер. Этой платой осуществляется обработка входных сигналов монитора и преобразование их в сигналы управления LCD-панелью. Именной этой платой во многом определяется качество изображения, воспроизводимого на экране монитора. Основное отличие моделей мониторов друг от друга заключается в конфигурации этой печатной платы, в типе установленных на ней микросхем и в их "прошивке".

Плата лицевой панели управления представляет собой узкую печатную плату, на которой расположены только лишь кнопки и светодиод.

Плата источников питания (в документации LG ее обозначают, как LIPS ), представляет собой комбинированный источник питания, который состоит из двух импульсных преобразователей: основного блока питания и инвертора задней подсветки. Этой платой формируются все основные напряжения, необходимые для работы и основной платы, и LCD-панели, а также формируется высоковольтное напряжение для ламп задней подсветки. Именно эта печатная плата дает наибольшее количество различных проблем и отказов LCD-мониторов.

Но существует и второй вариант компоновки, при котором кроме LCD-матрицы в мониторе имеется четыре печатные платы:

- основная плата управления и обработки сигналов (Main PCB );

- плата блока питания (Power PCB );

- плата инвертора задней подсветки (Back Light Inverter PCB );

- плата лицевой панели управления.

В данном варианте компоновки блок питания и инвертор задней подсветки представляют собой отдельные печатные платы (рис.3).

Рис.3

Межблочные связи, характерные для такой компоновки монитора, представлены на рис.4. В качестве примера здесь можно представить мониторы LG FLATRON L1810B и L1811B.

Рис.4

Прежде чем говорить о различных вариантах схемотехники LCD дисплеев, дадим краткие характеристики основным компонентам, из которых они состоят.

Микропроцессор

Микропроцессором, который в различных источниках может обозначаться как CPU, MCU и MICOM , осуществляется общее управление монитором. Основными его функциями являются:

- формирование сигналов для включения и выключения задней подсветки;

- управление яркостью ламп задней подсветки;

- настройка режима работы скалера;

- формирование сигналов управляющих работой скалера;

- обработка и контроль входных синхросигналов HSYNC и VSYNC;

- определение режима работы монитора;

- определение типа входного интерфейса (D-SUB или DVI);

- обработка сигналов от лицевой панели управления.

Управляющая программа микропроцессора, как правило, находится в его внутреннем ПЗУ, т.е. эта программ "прошита" в микропроцессоре. Однако часть управляющего кода, и особенно различные данные и переменные хранятся во внешней энергонезависимой памяти, которая представляет собой электрически перепрограммируемое ПЗУ – EEPROM. Микропроцессор имеет прямой доступ к микросхемам EEPROM.

Микропроцессор, как правило, является 8-разрядным и работает на тактовых частотах порядка 12 – 24 МГц. Микропроцессор, на самом деле, является однокристальным микроконтроллером, в составе которого, кроме CPU имеются еще:

- многоцелевые цифровые порты ввода/вывода с программируемыми функциями;

- аналоговые входные порты и цифро-аналоговый преобразователь;

- тактовый генератор;

- ПЗУ;

- ОЗУ и другие элементы.

EEPROM

В энергонезависимой памяти, в первую очередь, хранятся данные о настройках монитора и заданные пользователем установки. Эти данные извлекаются из EEPROM в момент включения монитора и инициализации микропроцессора. При каждой настройке монитора и установке нового пользовательского значения какого-либо параметра изображения, эти новые значения переписываются в EEPROM, что позволяет их сохранить. В современных мониторах в качестве EEPROM , в основном, применяются микросхемы с последовательным доступом по шине I2C (сигналы SDA и SCL ). Это микросхемы типа 24C02, 24C04, 24C08 и т.д.

DDC- EEPROM

Все современные мониторы поддерживают технологию Plug&Play, которая предполагает передачу от монитора в сторону ПК паспортной и конфигурационной информации о мониторе. Для передачи этих данных используется последовательный интерфейс DDC, которому на интерфейсе соответствую сигналы DDC-DATA (DDC-SDA) и DDC-CLK (DDC-SCL) . Сама паспортная информация хранится в еще одном EEPROM, который, практически, напрямую соединен с интерфейсным разъемом. В качестве EEPROM используются те же микросхемы 24C02, 24C04, 24C08 , а также может использоваться и более специализированная – 24C21 .

Формирователь RESET

Схема формирования сигнала RESET обеспечивает контроль питающего напряжения микропроцессора. Если это напряжение становится ниже допустимого значения, работа микропроцессора блокируется установкой сигнала REST в низкий уровень. В качестве формирователя сигнала чаще всего используется микросхема Low Drop стабилизатора, типа KIA7042 или KIA7045.

Скалер

Микросхемой скалера осуществляется обработка сигналов, приходящих от ПК. Скалер в большинстве случаев представляет собой многофункциональную микросхему, в состав которой обычно входят:

- микропроцессор;

- ресивер (приемник) TMDS, которым обеспечивается прием и преобразование в параллельный вид данных, передаваемых по интерфейсу DVI;

- аналого-цифровой преобразователь – АЦП (ADC), которым осуществляется преобразование входных аналоговых сигналов R/G/B;

- блок ФАПЧ (PLL), который необходим для корректного аналого-цифрового преобразования и синхронного формирования сигналов на выходе АЦП;

- схема масштабирования (Scaler), которая обеспечивает преобразования изображения с входным разрешением (например, 1024х768) в изображение с разрешением LCD-панели (например, 1280х1024);

- формирователь OSD;

- трансмиттер (LVDS), который осуществляет преобразование параллельных данных о цвете в последовательный код, передаваемый на LCD-панель по шине LVDS.

Кроме этих основных элементов, в составе некоторых скалеров можно выделить еще схему гамма-коррекции, интерфейс для работы с динамической памятью, схему фрейм-граббера, схемы конвертации форматов (например, YUV в RGB) и т.п.

Фактически, скалер является микропроцессором, оптимизированным под выполнение вполне определенных задач – обработку изображения. Скалер настраивается на формат входных сигналов, получая соответствующие команды от центрального процессора монитора.

Если в составе монитора имеется фрейм-буфер (оперативная память), то работа с ним является функцией именно скалера. Для этого многие скалеры оснащаются интерфейсом для работы с динамической памятью.

Пример функциональной схемы скалера GM5020, используемого в мониторе LG FLATRON L1811B, представлен на рис.5. Особенностью этого скалера является то, не содержит внутреннего LVDS-трансмиттера, и формирует сигналы цвета в виде параллельного 48-разрядного потока цифровых данных. При использовании скалера GM5020 требуется еще и внешний LVDS-трансмиттер, представляющий собой специализированную микросхему.

Рис.5

Фрейм-буфер

Фрейм-буфер – это оперативная память достаточно большой емкости, которая используется для сохранения образа изображения, выводимого на экран. Эта память требуется при преобразовании (масштабировании) изображения, т.е. когда входное разрешение не совпадает с разрешением LCD-панели. В качестве фрейм-буфера используется память динамического типа, чаще всего SDRAM. Емкость этой памяти определяет разработчиком, исходя из формата LCD-панели и ее цветовых характеристик.

DC-DC преобразователь

Этим модулем обеспечивается формирование всех постоянных напряжений, необходимых для работы монитора. Этими напряжениями являются: +5V, +3.3V, +2.5V или +1.8V. Преобразователи представляю собой либо линейные, либо импульсные преобразователи постоянного напряжения.

Буфер синхросигналов

Буфер синхросигналов, представляют собой усилители, выполненные либо на транзисторах, либо на микросхемах мелкой логики. Буфером обеспечивается усиление и буферизация входных сигналов синхронизации HSYNC и VSYNC . Часто буферы управляются микропроцессором, что позволяет выбрать источник сигнала, а также выбрать тип синхронизации (раздельная, композитная или SOG ).

Инвертор

Инвертор формирует высоковольтное и высокочастотное напряжение для ламп задней подсветки. Представляет собой импульсный высокочастотный преобразователь, который из напряжения +12V создает импульсное напряжение амплитудой около 800В .

Блок питания

Блоком питания из переменного напряжения сети формируются постоянные напряжения +12В и +5В, используемые для питания всех каскадов монитора. Блок питания является импульсным и может представлять собой как внешний сетевой адаптер, так и внутренний модуль монитора, хотя в мониторах, представленных в данном обзоре, блок питания является внутренним.

Подавляющее большинство LCD мониторов можно отнести к одному из трех базовых вариантов схемотехники, которые попытаемся охарактеризовать.

1) Первый вариант характеризуется наличием на MAIN BOARD двух основных микросхем: микросхемы микропроцессора и микросхемы скалера. Микропроцессором осуществляется общее управление компонентами монитора, а скалер осуществляет преобразование цветовых сигналов, т.е. осуществляет подстройку изображения под разрешение LCD-панели. При этом скалер обрабатывает данные "на лету", т.е. без предварительного сохранения образа изображения в промежуточной памяти. Поэтому микросхемы памяти в таком варианте схемотехники не используются. Блок-схема такого LCD-монитора демонстрируется на рис.6.

Рис.6

2) Второй вариант (рис.7)отличается от первого наличием в мониторе микросхем памяти, которые часто называют буфером фрейма (Frame Buffer). Наличие микросхем памяти характерно для мониторов более высокого класса, которые способны работать с изображениями различных входных форматов, в том числе и телевизионных. К этому классу мониторов в большей степени относятся 18-дюймовые мониторы, например FLATRON L1811B.

Рис.7

3) Третий вариант характеризуется наличием на основной плате MAIN BOARD всего одной "активной" микросхемы. Под термином" активная микросхема" мы подразумеваем микросхему, имеющую собственную систему команд, программируемую под выполнение различных функций и способную выполнять какую-либо обработку сигналов. В некоторых мониторах (например, в FLATRON L1730B и L1710S), мы видим всего одну такую микросхему, которая совмещает в себе и функции микропроцессора и функции скалера. Так как подобные микросхемы могут использоваться в различных моделях мониторов, и так как в составе микросхемы имеется микропроцессор, для работы которого требуется наличие управляющих кодов, то на плате MAIN BOARD мы найдем еще и микросхему постоянного запоминающего устройства – ПЗУ (ROM). Эта микросхема, которая чаще всего является 8-разрядным ПЗУ с параллельным доступом, содержит управляющую программу для работы комбинированной микросхемы скалера-микропроцессора. Часто микросхема ПЗУ является электрически перепрограммируемой, и поэтому ее часто обозначают, как FLASH. Практически во всех мониторах LG в качестве ПЗУ используются микросхема семейства AT49HF. Блок-схема мониторов с такой схемотехникой представлена на рис.8.

Рис.8

Кроме этих трех вариантов построения монитора можно ввести и еще один вариант. Он отличается тем, что в мониторе используется такой скалер, который не имеет встроенного LVDS-трансмиттера. В этом случае трансмиттеру соответствует отдельная микросхема, которая устанавливается на основной плате между скалером и LCD-панелью. LVDS-трансмиттер осуществляет преобразование параллельного (24 или 48 разрядного) цифрового потока данных, сформированного скалером, в последовательные данные шины LVDS. LVDS-трансмиттер представляет собой микросхему общего применения, которая может использоваться в любых мониторах. Такая схемотехника, с внешним LVDS-трансмиттером, также характерна, в большей степени, для мониторов более высокого класса, т.к. в них применяются специализированные скалеры с меньшим количеством дополнительных функций. Пример блок-схемы монитора с подобной схемотехникой представлен на рис.9. В качестве примере монитора с таким построением, можно назвать модель LG FLATRON L1811B .

Рис.9

Здесь были рассмотрены лишь базовые варианты современной схемотехники, хотя во всем многообразии моделей и торговых марок LCD-мониторов можно встретить самые различные комбинации представленных блок-схем. В сводной таблице 1 отражены типы применяемых микросхем и особенности схемотехники наиболее массовых моделей мониторов LG.

Таблица 1. Особенности схемотехники TFT-мониторов компании LG

Модель монитора

Вариант компоновки

Вариант схемотехники

Типы основных микросхем

Тип используемой

LCD панели

CPU

Скалер

LVDS

L1510S

см. рис.1

см. рис.6

MTV312

MST9011

LM150X06-A3M1

L1510P

см. рис.1

см. рис.6

MTV312

MST9051

LM150X06-A3M1

L1511S

см. рис.1

см. рис. 9

MTV312

GMZAN2

THC63LVDM83R

1) LM150X06-A3M1

2) LM150X07-B4

L1520B

см. рис.1

см. рис.6

MTV312

MST9011

LM150X06-A4C3

L1710S

см. рис.1

см. рис. 8

GM2121

1) HT17E12-100

2) M170EN05

L1710B

см. рис.1

см. рис.6

MTV312

MST9151

1) LM170E01-A4

2) HT17E12-100

3) M170EN05V1

L1715 /16 S

см. рис.1

см. рис.6

MTV312

MST9111

LM170E01-A4

L1720B

см. рис.1

см. рис.6

MTV312

MST9111

1) LM170E01-A4

2) LM170E01-A5K6

3) LM170E01-A4K4

4) LM170E01-A5

L1730B

см. рис.1

см. рис. 8

GM5221

1) LM170E01-A5K6

2) LM170E01-A5N5

3) LM170E01-A5KM

L1810B

см. рис. 3

см. рис.6

MTV312

MST9151

1) LM181E06-A4M1

2) LM181E06-A4C3

L1811B

см. рис. 3

см. рис. 9

68HC08

GM5020

THC63LVD823

1) LM181E05-C4M1

2) LM181E05-C3M1

L1910PL

см. рис.1

см. рис.6

MTV312

MST9151

FLC48SXC8V-10

L1910PM

см. рис.1

см. рис.6

MTV312

MST9151

FLC48SXC8V-10

Аналитический обзор данных, представленных в таблице 1, позволяет сделать несколько интересных выводов.

Во-первых , практически все, представленные в таблице 1 мониторы, имеют одинаковую схему компоновки, которая, кстати, характерна практически для всех современных мониторов, независимо от фирмы-производителя.

Во-вторых , LG в своих мониторах в качестве управляющего процессора использует, преимущественно, микроконтроллер MTV312 , разработанный фирмой MYSON TECHNOLOGY . Этот микроконтроллер в своей основе имеет известнейший микропроцессор 8051. Кроме того, в состав микроконтроллера входят ОЗУ, Flash-ПЗУ, АЦП, процессор синхронизации, цифровые порты и целый ряд других элементов.

В-третьих, необходимо отметить, что в некоторых моделях мониторов могут использоваться различные типы LCD-панелей. Так, например, под крышкой мониторов, продаваемых под торговой маркой FLATRON 1710B , можно встретить LCD-панели трех разных типов: LM170E01-A4, HT17E12-100, M170EN05V1 , и это является весьма распространенной практикой практически всех производителей мониторов. Но интересным является тот факт, что иногда фирма LG в своих мониторах использует панели других производителей, являясь при этом крупнейшим мировым их производителем. Принадлежность LCD-панели можно определить по ее маркировке, первые буквы которой и определяют производителя:

LM – панели производства LG-PHILIPS

HT – панели производства HITACHI

M – панели производства AUO

FLC – панели производства FUJITSU

Представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.

В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.

Также он является одной из причин успеха портативных компьютеров - иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.

Принцип работы ЖК-монитора

Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.

Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).

Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана - крученном нематическом - направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.

Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.

Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение - являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.

Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).

Мультиплексорный экран

Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.

Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).

Цветные экраны

В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.

В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.

Пассивная матрица

Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.

Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.

Активные матричные технологии

В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.

Скрученный нематик (TN)

TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.

3LCD-технология

Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. - и в Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.

IPS-технология

Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного в ноутбуках.

Экраны нулевой мощности

Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений - «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.

Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.

Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.

Контроль качества

ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными - 16.

Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина - только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.

100% гарантия

Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.

Диагностика и ремонт мониторов

Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.

Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора - включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.

Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал - вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP - это выход из строя некоторых конденсаторов. Простейший выход в этом случае - заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.

Индикатор питания не загорается. Вероятная причина - поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина - КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.

Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.

Особенности ухода

Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.

Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.

Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.

Чистящее средство следует наносить на салфетку, а не на загрязнение.

Протирая дисплей, нельзя применять силу.

Нельзя включать монитор до полного его высыхания.

Недостатки

ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:

  • Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
  • ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
  • ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5-8 мс.
  • Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
  • ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
  • Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
  • ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
  • Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
  • Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.

Эмулируется мерцанием с дизерингом [ ] .

Технические характеристики

Важнейшие характеристики ЖК-дисплеев:

  • тип матрицы - определяется технологией, по которой изготовлен ЖК-дисплей;
  • класс матрицы; стандарт ISO 13406-2 выделяет четыре класса матриц по допустимому количеству «битых пикселей »;
  • разрешение - горизонтальный и вертикальный размеры, выраженные в пикселях . В отличие от ЭЛТ -мониторов, ЖК-дисплеи имеют одно фиксированное разрешение, а поддержка остальные реализуется путём интерполяции (ЭЛТ-мониторы также имеют фиксированное количество пикселей, которые также состоят из красных, зеленых и синих точек, однако из-за особенностей технологии при выводе нестандартного разрешения в интерполяции нет необходимости);
  • размер точки (размер пикселя) - расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением;
  • соотношение сторон экрана (пропорциональный формат) - отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.);
  • видимая диагональ - размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: при одинаковой диагонали, монитор формата 4:3 имеет большую площадь, чем монитор формата 16:9;
  • контрастность - отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению;
  • яркость - количество света, излучаемое дисплеем (обычно измеряется в канделах на квадратный метр);
  • время отклика - минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:
    • время буферизации (input lag ). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20-50 ; в отдельных ранних моделях достигало 200 мс ;
    • время переключения. Указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас (2016) практически во всех мониторах заявленное время переключения составляет 1-6 мс ;
  • угол обзора - угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в технических параметрах своих мониторов углы обзора, такие, к примеру, как: CR 5:1 - 176/176°, CR 10:1 - 170/160°. Аббревиатура CR (англ. contrast ratio ) обозначает уровень контрастности при указанных углах обзора относительно контрастности при взгляде перпендикулярно экрану. В приведённом примере, при углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже, чем 10:1, при углах обзора 176°/176° - не ниже, чем до значения 5:1.

Устройство

Конструктивно дисплей состоит из следующих элементов:

  • ЖК-матрицы (первоначально - плоский пакет стеклянных пластин, между слоями которого и располагаются жидкие кристаллы; в 2000-е годы начали применяться гибкие материалы на основе полимеров);
  • источников света для подсветки ;
  • контактного жгута (проводов);
  • корпуса, чаще пластикового , с металлической рамкой для придания жёсткости.

Состав пикселя ЖК-матрицы:

  • два прозрачных электрода ;
  • слой молекул, расположенный между электродами;
  • два поляризационных фильтра , плоскости поляризации которых (как правило) перпендикулярны.

Если бы жидких кристаллов между фильтрами не было, то свет, пропускаемый первым фильтром, практически полностью блокировался бы вторым фильтром.

Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной.

Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля , что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение , можно управлять степенью прозрачности.

Если постоянное напряжение приложено в течение долгого времени, жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток или изменение полярности поля при каждой адресации ячейки (так как изменение прозрачности происходит при включении тока, вне зависимости от его полярности).

Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам.

Проходящий через ячейки свет может быть естественным - отражённым от подложки (в ЖК-дисплеях без подсветки). Но чаще применяют , кроме независимости от внешнего освещения, это также стабилизирует свойства полученного изображения.

Малогабаритные ЖК-дисплеи без активной подсветки, применяемые в электронных часах, калькуляторах и т. п., обладают чрезвычайно низким энергопотреблением , что обеспечивает длительную (до нескольких лет) автономную работу таких устройств без замены гальванических элементов.

С другой стороны, ЖК-мониторы имеют и множество недостатков, часто принципиально трудноустранимых, например:

  • в отличие от ЭЛТ , могут отображать чёткое изображение лишь при одном («штатном») разрешении. Остальные достигаются интерполяцией ;
  • по сравнению с ЭЛТ, ЖК-мониторы имеют малый контраст и глубину чёрного цвета . Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения;
  • из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки) - на некоторых мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах), связанная с использованием блоков линейных ;
  • фактическая скорость смены изображения также остаётся заметно ниже, чем у ЭЛТ и плазменных дисплеев . Технология overdrive решает проблему скорости лишь частично;
  • зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии. В ЭЛТ-дисплеях эта проблема полностью отсутствует;
  • массово производимые ЖК-мониторы плохо защищены от механических повреждений. Особенно чувствительна матрица, не защищённая стеклом. При сильном нажатии возможна необратимая деградация;
  • существует проблема дефектных пикселей . Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2 (в России - ГОСТ Р 52324-2005). Стандарт определяет 4 класса качества ЖК-мониторов. Самый высокий класс - 1, вообще не допускает наличия дефектных пикселей. Самый низкий - 4, допускает наличие до 262 дефектных пикселей на 1 миллион работающих. Мониторы с ЭЛТ этой проблеме не подвержены;
  • пиксели ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения, за исключением лазерных дисплеев , вообще не подверженных ей.
  • не очень большой диапазон рабочих температур: происходит ухудшение динамических характеристик (и далее неработоспособность) при даже небольших отрицательных температурах окружающей среды.
  • матрицы довольно хрупкие, а их замена весьма дорогостоящая

Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED -дисплеи (матрица с органическими светодиодами), однако она встретила много сложностей в массовом производстве, особенно для матриц с большой диагональю.

Технологии

Основные технологии при изготовлении ЖК-дисплеев: TN+film, IPS (SFT, PLS) и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода . Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, применённого в конкретных разработках.

Время отклика ЖК-мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display - кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс .

В настоящее время [когда? ] в России только два предприятия (московский МЭЛТ и саратовское НПП «Дисплей») разрабатывают и производят ЖК-дисплеи по технологиям TN и STN [ ] .

TN+film

TN + film (Twisted Nematic + film) - самая простая технология. Слово «film» в названии технологии означает «дополнительный слой», применяемый для увеличения угла обзора (ориентировочно - от 90 до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. Способа улучшения контрастности и углов обзора для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности - нет.

Матрица TN + film работает следующим образом: если к субпикселям не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И поскольку направление поляризации фильтра на второй пластине составляет как раз угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.

К достоинствам технологии можно отнести самое малое время отклика среди современных матриц [когда? ] , а также невысокую себестоимость. Недостатки: худшая цветопередача, наименьшие углы обзора.

IPS

AS-IPS (Advanced Super IPS - расширенная супер-IPS) - также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации NEC (например, NEC LCD20WGX2), созданных по технологии S-IPS, разработанной консорциумом LG Display.

H-IPS A-TW (Horizontal IPS with Advanced True White Polarizer ) - разработана LG Display для корпорации NEC . Представляет собой H-IPS панель с цветовым фильтром TW (True White - «настоящий белый») для придания белому цвету большей реалистичности и увеличения углов обзора без искажения изображения (исключается эффект свечения ЖК-панелей под углом - так называемый «глоу-эффект»). Этот тип панелей используется при создании профессиональных мониторов высокого качества .

AFFS (Advanced Fringe Field Switching , неофициальное название - S-IPS Pro) - дальнейшее улучшение IPS, разработана компанией BOE Hydis в 2003 году. Увеличенная напряжённость электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК , на матрицах производства Hitachi Displays.

Развитие технологии «super fine TFT» от NEC
Название Краткое обозначение Год Преимущество Примечания
Super fine TFT SFT 1996 Широкие углы обзора, глубокий чёрный цвет . При улучшении цветопередачи яркость стала немного ниже.
Advanced SFT A-SFT 1998 Лучшее время отклика Технология эволюционировала до A-SFT (Advanced SFT, Nec Technologies Ltd. в 1998), значительно уменьшив время отклика.
Super-advanced SFT SA-SFT 2002 Высокая прозрачность SA-SFT, разработанная Nec Technologies Ltd. в 2002, позволила улучшить прозрачность в 1,4 раза по сравнению с A-SFT.
Ultra-advanced SFT UA-SFT 2004 Высокая прозрачность
Цветопередача
Высокая контрастность
Позволила достичь в 1,2 раза большей прозрачности по сравнению с SA-SFT, 70 % охвата цветового диапазона NTSC и увеличения контрастности.
Развитие технологии IPS фирмой Hitachi
Название Краткое обозначение Год Преимущество Прозрачность/
Контрастность
Примечания
Super TFT IPS 1996 Широкие углы обзора 100/100
Базовый уровень
Большинство панелей также поддерживают реалистичную цветопередачу (8 бит на канал) . Эти улучшения появились ценой более медленного времени отклика, изначально около 50 мс. IPS панели также были очень дороги.
Super-IPS S-IPS 1998 Отсутствует цветовой сдвиг 100/137 IPS был вытеснен S-IPS (Super-IPS, Hitachi Ltd. в 1998), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика
Advanced super-IPS AS-IPS 2002 Высокая прозрачность 130/250 AS-IPS, также разработанный Hitachi Ltd. в 2002, повышает, главным образом, контрастность традиционных S-IPS панелей до уровня, при котором они стали вторыми после некоторых S-PVA.
IPS-provectus IPS-Pro 2004 Высокая контрастность 137/313 Технология панелей IPS Alpha с более широкой цветовой гаммой и контрастностью, сравнимой с контрастностью PVA и ASV дисплеев без углового свечения.
IPS alpha IPS-Pro 2008 Высокая контрастность Следующее поколение IPS-Pro
IPS alpha next gen IPS-Pro 2010 Высокая контрастность Hitachi передает технологию Panasonic
Развитие технологии IPS фирмой LG
Название Краткое обозначение Год Примечания
Super-IPS S-IPS 2001 LG Display остается одним из главных производителей панелей, основанных на технологии Hitachi Super-IPS.
Advanced super-IPS AS-IPS 2005 Улучшена контрастность с расширенной цветовой гаммой.
Horizontal IPS H-IPS 2007 Достигнута ещё большая контрастность и визуальная более однородная поверхность экрана. Также дополнительно появилась технология Advanced True Wide Polarizer на основе поляризационной плёнки NEC, для достижения более широких углов обзора, исключения засветки при взгляде под углом. Используется в профессиональной работе с графикой.
Enhanced IPS e-IPS 2009 Имеет более широкую апертуру для увеличения светопроницаемости при полностью открытых пикселях, что позволяет использовать более дешевые в производстве лампы подсветки, с более низким энергопотреблением. Улучшен диагональный угол обзора, время отклика уменьшено до 5 мс.
Professional IPS P-IPS 2010 Обеспечивает 1,07 млрд цветов (30-битная глубина цвета). Больше возможных ориентаций для субпикселя (1024 против 256) и лучшая глубина true color-цветопередачи.
Advanced high performance IPS AH-IPS 2011 Улучшена цветопередача, увеличено разрешение и PPI , повышена яркость и понижено энергопотребление .

MVA

Технология VA (сокр. от vertical alignment - вертикальное выравнивание) была представлена в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.

Наследницей технологии VA стала технология MVA (multi-domain vertical alignment ), разработанная компанией Fujitsu как компромисс между TN- и IPS-технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160° (на современных моделях мониторов до 176-178°), при этом, благодаря использованию технологий ускорения (RTC), эти матрицы не сильно отстают от TN+Film по времени отклика. Они значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.

Достоинствами технологии MVA являются глубокий чёрный цвет (при перпендикулярном взгляде) и отсутствие как винтовой структуры кристаллов, так и двойного магнитного поля . Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения.

Аналогами MVA являются технологии:

  • PVA (patterned vertical alignment ) от Samsung;
  • Super PVA от Sony-Samsung (S-LCD);
  • Super MVA от CMO;
  • ASV (advanced super view ), также называется ASVA (axially symmetric vertical alignment ) от Sharp.

Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским свойствам.

PLS

PLS-матрица (plane-to-line switching ) была разработана компанией Samsung как альтернатива IPS и впервые продемонстрирована в декабре 2010 года. Предполагается, что эта матрица будет на 15 % дешевле, чем IPS .

Достоинства:

  • плотность пикселей выше по сравнению с IPS (и аналогична с *VA/TN) [ ] ;
  • высокая яркость и хорошая цветопередача [ ] ;
  • большие углы обзора [ ] ;
  • полное покрытие диапазона sRGB [ ] ;
  • низкое энергопотребление, сравнимое с TN [ ] .

Недостатки:

  • время отклика (5-10 мс) сравнимо с S-IPS, лучше чем у *VA, но хуже чем у TN.

PLS и IPS

Компания Samsung не давала описания технологии PLS . Сделанные независимыми наблюдателями сравнительные исследования матриц IPS и PLS под микроскопом не выявили отличий . То, что PLS является разновидностью IPS, косвенно признала сама корпорация Samsung своим иском против корпорации LG: в иске утверждалось, что используемая LG технология AH-IPS является модификацией технологии PLS .

Подсветка

Сами по себе жидкие кристаллы не светятся. Чтобы изображение на жидкокристаллическом дисплее было видимым, нужен . Источник может быть внешним (например, Солнце), либо встроенным (подсветка). Обычно лампы встроенной подсветки располагаются позади слоя жидких кристаллов и просвечивают его насквозь (хотя встречается и боковая подсветка, например, в часах).

Внешнее освещение

Монохромные дисплеи наручных часов и мобильных телефонов большую часть времени используют внешнее освещение (от Солнца, ламп комнатного освещения и так далее). Обычно позади слоя пикселей из жидких кристаллов находится зеркальный или матовый отражающий слой. Для использования в темноте такие дисплеи снабжаются боковой подсветкой. Существуют также трансфлективные дисплеи , в которых отражающий (зеркальный) слой является полупрозрачным, а лампы подсветки располагаются позади него.

Подсветка лампами накаливания

В прошлом в некоторых наручных часах с монохромным ЖК-дисплеем использовалась сверхминиатюрная лампа накаливания . Но из-за высокого энергопотребления лампы накаливания являются невыгодными. Кроме того, они не подходят для использования, например, в телевизорах, так как выделяют много тепла (перегрев вреден для жидких кристаллов) и часто перегорают.

Электролюминесцентная панель

Монохромные ЖК-дисплеи некоторых часов и приборных индикаторов используют для подсветки электролюминесцентную панель. Эта панель представляет собой тонкий слой кристаллофосфора (например, сульфида цинка), в котором происходит электролюминесценция - свечение под действием тока. Обычно светится зеленовато-голубым или жёлто-оранжевым светом.

Подсветка газоразрядными («плазменными») лампами

В течение первого десятилетия XXI века подавляющее большинство LCD-дисплеев имело подсветку из одной или нескольких

LCD (Liquid crystal display) или ЖК (жидкокристаллический) телевизор, как их называют в народе - это телевизор с ЖК дисплеем и ламповой подсветкой. Жидкокристаллический , означает, что сам дисплей (монитор) сделан на основе жидких кристаллов

LCD TFT (англ. Thin film transistor - тонкоплёночный транзистор) - разновидность жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами . Усилитель для каждого субпикселя (элемента матрицы) применяется для повышения быстродействия, контрастности и чёткости изображения дисплея

  • Немного истории:
  • Жидкие кристаллы впервые были обнаружены австрийским ботаником Райнитцером в 1888 г., но только в 1930 -м году исследователи из британской корпорации Marconi получили патент на их промышленное применение, однако, слабость технологической базы не позволяла в то время активно развивать это направление.

    Первый настоящий прорыв совершили ученые Фергесон и Вильямс из американской корпорации RCA . Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 г., корпорация RCA продемонстрировала прототип LCD-монитора - цифровые часы . Первый в мире калькулятор - CS10A был произведен в 1964 году корпорацией Sharp , она же, в октябре 1975 года, выпустила первые компактные цифровые часы с ЖК дисплеем. К сожалению, фоток не нашёл, а вот эти часы и калькулятор - ещё помнят многие

    Во второй половине 70-х начался переход от восьмисегментных ЖК индикаторов к производству матриц с адресацией (возможностью управления) каждой точки. Так, в 1976 году, компания Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

    Следующий этап в развитии LCD-технологии начался в 80-х годах, когда в устройствах стали применяться STN-элементы с повышенной контрастностью. Затем на смену им пришли многослойные структуры, позволяющие устранить ошибки при воспроизведении цветного изображения. Примерно тогда же появились активные матрицы на базе технологии a-Si TFT . Первый прототип монитора a-Si TFT LCD был создан в 1982 году корпорациями Sanyo , Toshiba и Cannon , ну а мы, в это время, любили играться вот такими игрушками с ЖК дисплеем

    Сейчас ЖК дисплеи практически полностью вытеснили с рынка кинескопные телевизоры, предлагая покупателю любые размеры: от переносных и небольших "кухонных", до огромных, с диагоналями более метра. Ценовой диапазон так же весьма велик и позволяет каждому подобрать телевизор по своим потребностям и финансовым возможностям

    Схемотехника LCD телевизоров гораздо сложнее, чем у простых кинескопных ТВ: миниатюрные детали, многослойные платы, дорогостоящие блоки... Вот, кому интересно, телевизор с ЖК панелью без задней крышки, а если снять специальные защитные экраны, можно будет увидеть другие участки схемы, только лучше этого не делать, оставьте это мастерам

  • Устройство и принцип работы:
  • Работа ЖК дисплея (ЖКД) основана на явлении поляризации светового потока . Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Этот эффект называется поляризацией света .

    Если совсем по простому , представьте "свет" в виде маленьких круглых шариков, если на его пути поставить сетку с продольными вырезами (поляризатор), то, после неё, из "шариков" останутся только плоские "блинчики" (поляризованный свет). Теперь, если вторая сетка будет с такими же продольными вырезами, блинчики смогут "проскочить" через неё и "светить" дальше, если же вторая сетка будет иметь вертикальные прорези, то световые горизонтальные "блинчики" не смогут пройти сквозь неё и "застрянут"

    Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами

    Конструктивно дисплей состоит из ЖК-матрицы (стеклянной пластины, между слоями которой и располагаются жидкие кристаллы), источников света для подсветки, контактного жгута и обрамления (корпуса ), чаще пластикового, с металлической рамкой жёсткости.

    Каждый пиксель ЖК-матрицы состоит из слоя молекул между двумя прозрачными электродами , и двух поляризационных фильтров , плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.

    Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света, ячейку можно считать прозрачной, хотя уроверь потерь - немалый.

    Если же к электродам приложено напряжение, то молекулы стремятся выстроиться в направлении электрического поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры, степенью прозрачности можно управлять, изменяя приложенное напряжение.

    В качестве источника света (подсветки ЖК-матрицы) используются флуоресцентные лампы с холодным катодом (называются они так, потому что катод, испускающий электроны (отрицательный электрод) внутри лампы необязательно нагревать выше окружающей температуры, чтобы лампочка зажглась). Вот так может выглядеть лампа для LCD телевизора, на правом фото - "ламповая сборка в работе" для телевизора с большой диагональю ЖК-дисплея:

    Сами лампы (белого яркого свечения) располагаются в специальных корпусных фиксаторах , позади их - отражатель , для уменьшения потерь светового потока. Для того, чтобы ЖК-матрица засветилась равномерно (а не полосато, как лампы установлены ), перед экраном находится рассеиватель , который равномерно распределяет световой поток по всей своей площади. К сожалению, в этом месте так же происходит немалая потеря "яркости" свечения ламп

    Современные ЖК-матрицы имеют достаточно хороший угол обзора (около 160 градусов) без потери качества изображения (красок, яркости), самое неприятное, что на них можно увидеть - это вот такие битые пиксели , однако, учитывая то, что их размер очень мал, один-два таких "прогоревших" пикселя не сильно будут мешать просмотру фильмов и передач, а вот на экране монитора - это уже может быть достаточно неприятно

  • Преимущества и недостатки:
  • По сравнению с кинескопными телевизорами, ЖК-панели имеют отличную фокусировку и чёткость, нет ошибок сведения лучей или нарушения геометрии изображения, экран никогда не мерцает, они легче и занимают меньше места К минусам можно отнести слабоватую (по сравнению с кинескопными) яркость и контрастность, матрица не такая прочная, как экран кинескопа, набор цифровых тормозов и глюков при аналоговом или слабом сигнале, а так же плохой обработке исходного материала

    Похожие статьи